

mathematics class

ABCD is a parallelogram. From A, line \overline{AE} is drawn perpendicular to \overline{AB} and equal to \overline{AD} , E being on the opposite side of \overline{AB} as D. From C, a line \overline{CF} is drawn perpendicular to BC and equal to CD, F being on the opposite side of BC from D. Prove that the angles ADE, CDF are equal and that \angle EDF is a right angle.

D In ΔDAE , AD = AE given $\therefore \angle ADE = \angle AED$... (1) A In Δ DCF, CD = CF given $\therefore \angle CDF = \angle CFD$... (2) ABCD is a prallelogram $\angle BAD = \angle BCD$ In Δ^{s} DAE, DCF, $\angle ADE + \angle AED = \angle CDF + \angle CFD$ But $\angle ADE = \angle AED$; $\angle CDF = \angle CFD$ $\therefore \angle ADE = \angle AED = \angle CDF = \angle CFD$ \Rightarrow /ADF = /CDF ABCD is a parallelogram $\therefore \angle ADC + \angle DCB = 180^{\circ}$ $\Rightarrow \angle EDF + 2y + x = 180^{\circ}$... (1) In \triangle DCF, 2y + x + 90 = 180° ... (2) From (1) and (2) $\angle EDF + 2y + x = 2y + x + 90$ $\Rightarrow \angle EDF = 90^{\circ}$

ABCD is a trapezium and P, Q are the mid-points of the diagonals AC and BD. Which of the following is equal to PQ ?

(A)
$$\frac{1}{2}(AB)$$
 (B) $\frac{1}{2}(CD)$ (C) $\frac{1}{2}(AB-CD)$ (D) $\frac{1}{2}(AB+CD)$

Key is (C)

Since AB || DC and transversal AC cuts them at A and C respectively

[∴ Alternate angles are equal]

Now, in $\triangle APR$ and $\triangle DPC$, $\angle 1 = \angle 2$

AP = CP [Since, P is the mid-point of AC] and $\angle 3 = \angle 4$

[Vertically opposite angles]

So, $\triangle APR \neq \triangle DPC$ [ASA]

 \Rightarrow AR = DC and PR = DP ... (ii)

Again, P and Q are the mid-points of sides DR and DB respectively in ΔDRB

$$\therefore PQ = \frac{1}{2}RB = \frac{1}{2}(AB - AR)$$

[Since, AR = DC]

$$\therefore PQ = \frac{1}{2}(AB - DC)$$

ABCD and APCR are the two parallelograms with AC as the common diagonal. Prove that PBRD is a parallelogram.

Construction

Let the diagonal AC is drawn and "O", the mid-point of AC is taken. PR and BD are also joined.

Since ABCD is a parallelogram the diagonals AC and BD bisect each other at "O".

 \therefore "O" is the mid-point of AC and also of BD.

Since APCR is a parallelogram, the diagonals AC and PR bisect each other at "O" $\,$

 \therefore "O" is the mid-point of PR [as "O" is the mid-point of AC]

Now, in quadrilateral PBRD, "O" is the mid-point of BD and also of PR. That is BD and PR bisect each other (at "O")

But they are the diagonals of quad PBRD

Hence, PBRD is a parallelogram

Hence it is proved

Key is (B)

From C, draw CL \perp AB and from D, drawn DM \perp AB

Then CL = DM

In $\triangle ACB$, since $\angle B$ is an acute angle,

 $\therefore AC^2 = AB^2 + BC^2 - 2AB.BL \qquad \dots (1)$

Similarly, In $\triangle ABD$, Since $\angle A$ is an acute angle,

 $\therefore BD^2 = AD^2 + AB^2 - 2AB \cdot AM \qquad \dots (2)$

Adding (1) and (2), we get

 $AC^2 + BD^2 = AD^2 + BC^2 + 2AB^2 - 2AB \cdot BL - 2AB \cdot AM$

 $= AD^2 + BC^2 + 2AB (AB - BL - AM)$

 $= AD^2 + BC^2 + 2AB(AL - AM)$

 $= AD^2 + BC^2 + 2AB ML$

 $= AD^2 + BC^2 + 2AB CD$

ABCD is a parallelogram. AB and AD are produced to P and Q respectively such that BP = AB and DQ = AD. Prove that P, C, Q lie on a straight line.

